Defining the Layer Stack

Now reading version 21. For the latest, read: Defining the Layer Stack for version 25
 

The PCB is designed and formed as a stack of layers. In the early days of printed circuit board (PCB) manufacturing, the board was simply an insulating core layer, clad with a thin layer of copper on one or both sides. Connections are formed in the copper layer(s) as conductive traces by etching away (removing) unwanted copper.

A single-sided PCB is shown on the left, typical of early PCB design. On the right is a rigid-flex PCB, where rigid sections are connected via flexible sections of PCB.        
A single-sided PCB is shown on the left, typical of early PCB design. On the right is a rigid-flex PCB, where rigid sections are connected via flexible sections of PCB.

Fast forward to today, where almost all PCB designs have multiple copper layers. Technological innovation and refinements in the processing technology have led to a number of revolutionary concepts in PCB fabrication, including the ability to design and manufacture flexible PCBs. By joining rigid sections of PCB together via flexible sections, complex, hybrid PCBs can be designed that can be folded to fit into unusually shaped enclosures.

In printed circuit board design, the layer stack defines how the layers are arranged in the vertical direction, or Z plane. Since it is fabricated as a single entity, any type of board, including a rigid-flex board, must be designed as a single entity. To do this, the designer must be able to define multiple PCB layer stacks and assign different layer stacks to different zones of the rigid-flex design.

The Layer Stack Manager

The definition of the PCB layer stack is a critical element of successful printed circuit board design. No longer just a series of simple copper connections that transfer electrical energy, the routing of many modern PCBs is designed as a series of circuit elements, or transmission lines.

Achieving a successful, high-speed PCB design is a process of balancing the material selection and layer stackup and assignment, against the routing dimensions and clearances required to achieve suitable single-sided and differential routing impedances. There are also numerous other design considerations that come into play when designing a modern, high-speed PCB, including layer-pairing, careful via design, possible back drilling requirements, rigid/flex requirements, copper balancing, layer stack symmetry, and material compliance.

The Layer Stack Manager brings together all of these layer-specific design requirements into a single editor.

To open the Layer Stack Manager select Design » Layer Stack Manager from the main menus. The Layer Stack Manager opens in a document editor in the same way as a schematic sheet, the PCB, and other document types do.

All aspects of layer stack management are performed in the Layer Stack Manager.
All aspects of layer stack management are performed in the Layer Stack Manager.

As a standard document editor, the Layer Stack Manager (LSM) can be left open while the board is being worked on, allowing you to switch back and forth between the board and the LSM. All of the standard view behaviors, such as splitting the screen or opening on a separate monitor are supported. Note that a Save action must be performed in the Layer Stack Manager before changes are reflected in the PCB.

The functionality is divided over a number of tabs displayed across the bottom of the Layer Stack Manager:

Editing the Layer Properties

Panel page: Properties panel - Layer Stack Support

The Layer Stack Manager presents the layer properties in a spreadsheet-like grid. The properties can be edited directly in the grid or they can be edited in the Properties panel. The panel can be used in each of the Layer Stack Manager tabs, for example, giving access to the impedance profile and transmission line properties in the Impedance tab, or the µVia settings in the Via Types tab.

Some of the different modes of the Properties panel in the Layer Stack Manager.

The Properties panel can be enabled/disabled via the  button at the bottom-right of the software.

Defining the Layer Stack

The layers you add in the Stackup tab of the Layer Stack Manager are the layers that will be fabricated during the manufacturing process.

Layer properties can be entered directly into the grid, or selected from the Material Library.Layer properties can be entered directly into the grid, or selected from the Material Library.

The properties of a layer can be edited directly in the grid or in the Properties panel.

  • Use the File » Load from File command to load an existing *.stackup template (or the File » Load from Server command, if you use a managed content server).
  • Use the File » Save As command to save the current stackup as a template (or the File » Save to Server command to save the template in your managed content server).
  • Pre-defined layer stacks are also available, in the Tools » Presets menu.

Configuring the Layer Properties and Materials

The properties of each layer can be edited directly in the LSM grid, or a pre-defined material can be selected from the Material Library by clicking the ellipsis button () in the Material cell for the selected layer. The Stackup Tab collapsible section earlier on this page summarizes the various techniques available for adding, removing, editing, and ordering the layers.

User-defined property columns can be added and the visibility of all columns configured in the Select columns dialog. To open the dialog, right-click on any column heading in the grid region then choose Select columns from the context menu.

Layer Types and their Properties

There is a large variety of materials used in the fabrication of a printed circuit board. The table in the collapsible section below gives a brief summary of the common materials used.

Materials Library and Library Compliance

Dialog page: Altium Material Library

Preferred layer stack materials can be pre-defined in the Material Library. In the Layer Stack Manager, select Tools » Material Library to open the Altium Material Library dialog, where existing materials can be reviewed, and new material definitions added.

The material for a specific layer is not selected in the Altium Material Library dialog. To use a specific material for a layer, click the ellipsis () for that layer in the Materials cell of the layer stack grid. This will open the Select Material dialog, which restricts the library to only show materials suitable for the layer that the ellipsis control was clicked.

If the Library Compliance checkbox is enabled in the Layer Stack Manager, then for each layer that has been selected from the Material Library, the current layer properties are checked against the values of that material definition in the library. Any property that is not compliant is marked with an error flag. Re-select the material () to update the values to the Material Library settings.

Layer Stack Symmetry

Dialog page: Stack is not symmetric

If you require the board layer stack to be symmetrical, enable the Stack Symmetry checkbox in the Board region of the Properties panel. When this is done, the layer stack is immediately checked for symmetry around the central dielectric layer. If any pair of layers that are equidistant from the central dielectric reference layer are not identical, the Stack is not symmetric dialog opens.

The upper section of the dialog details all detected conflicts in layer stack symmetry.

When Stack Symmetry is enabled:

  • An edit action applied to a layer property is automatically applied to the symmetrical partner-layer.
  • Adding layers will automatically add matching symmetrical partner-layers.
  • Use the Stack Symmetry option as a quick way of defining a symmetric board - define half of the layer stack, enable the Stack Symmetry option, then use one of the mirror whole stack options to replicate that set of layers.

Layerstack Visualization

An excellent way to verify the layer stack is to visualize it in 3D.

  • Select Tools » Layerstack Visualizer in the Layer Stack Manager to open the Layerstack Visualizer.
  • Use the controls to configure the presentation of the layer stack.
  • Right-click and drag to reorient the board in the visualizer.
  • Left-click on the image, then Ctrl+C to copy the image to the Windows clipboard.

Defining and Configuring the Rigid-Flex Substacks

Main article: Rigid-Flex Design

Rigid-Flex is under active development, and the updated feature-set is referred to as Rigid-Flex 2. Rigid-Flex 2 supports design features such as overlapping flexible and rigid board regions, new Board Region and Bending Line behaviors, and the introduction of the Board tab in the Layer Stack Manager. You can switch between Rigid-Flex 1 and Rigid-Flex 2 by configuring the following Advanced Settings options:

  • Rigid-Flex 1.0 - disable PCB.RigidFlex2.0 and PCB.RigidFlex.SubstackPlanning
  • Rigid-Flex 2.0 - enable PCB.RigidFlex2.0 and PCB.RigidFlex.SubstackPlanning

Learn more about configuring a board for rigid-flex design.

 

Each separate zone or region of a rigid-flex design can be made up of a different number of layers. To achieve that you need to be able to define multiple stacks, referred to as substacks.

To achieve this:

  • Enable the Rigid-Flex option by selecting Tools » Features » Rigid/Flex, or click the  button and then select Rigid/Flex.
  • If Rigid-Flex 2 is enabled, the display will switch to show the Board tab, as shown below. (If you are working in Rigid-Flex 1 mode, refer to the previous version of this page for the correct documentation)
  • Board mode is used to configure the different substacks required in the rigid-flex design. There must be a unique substack defined for each unique set of layers needed in the rigid and flex regions of the overall board.
  • Additional substacks can be quickly created from an existing substack using the Shift+Click shortcut to select the required layers, and then dragging the selection horizontally to position it in the set of substacks.
  • Configure the relationships between layers in adjacent Substacks - do they share layers (Common), or are the layers unique in that Substack (Individual).
  • Configure if adjacent layers intrude into the neighboring Substack.
  • Switch to editing a specific substack - double-click on it in the Board tab to do this.
  • Add additional Branches. Branches are used when the design has multiple flex sections radiating from a single rigid section.
  • Flex-specific bikini coverlay layers can only be added in a Substack that has the Is Flex option enabled and does not include a Soldermask layer.

  • Additional controls will appear at the top of the grid of layers, including a Substack selector drop-down button displaying the default Substack name (  ).
  • There will also be an additional Substack section in the Properties panel, where the current substack name can be edited in the Stack Name field. 
  • To add a new Substack, click the  button next to the Substack selector, name that Substack in the Properties panel then enable the Is Flex option where required. To remove a substack, click the  button.
  • The layers grid always displays the entire set of available layers. For a rigid/flex layer stack, each layer includes a checkbox on the left; use this to configure which layers are to be available in each substack.
  • A layer can be used in multiple substacks (span across multiple regions of the rigid-flex board); this is controlled by the layer checkbox.
  • Flex-specific bikini coverlay layers can only be added in a Substack that has the Is Flex option enabled and no Soldermask layer enabled.

When the Rigid/Flex option has been enabled, the Substack Selector button appears. Click to select and configure each substack. Hover the cursor over the image to see the Flex substack.When the Rigid/Flex option has been enabled, the Substack Selector button appears. Click to select and configure each substack. Hover the cursor over the image to see the Flex substack.

Other Layer-related Design Tasks

The layers in the layer stack form the space on which you build up the design. There are a number of design tasks that are related to the layers that are not performed in the Layer Stack Manager. These tasks are summarized below, with links to more information.

Defining the Board Shape

Main Article: Board Shape object, Board Region object, Bending Line object

Where the layer stack defines the board in the Z-plane, the Board Shape defines the board in the X and Y planes. Also referred to as the board outline, the board shape is a closed polygonal shape that defines the overall extent of the board. The Board Shape can be made up of a single Board Region (for a traditional rigid PCB), or multiple board regions (for a rigid-flex PCB).

The Board Shape can be:

  • Defined manually - by redefining the existing shape, or placing one or more new board regions in Board Planning mode.
  • Defined from selected objects - typically done from an outline on a mechanical layer. Use this option if an outline has been imported from another design tool.
  • Defined from a 3D body - use this option if the blank board has been imported as a STEP model from an MCAD tool into a 3D Body Object (Place » 3D Body).
  • Pulled directly from an MCAD package - Altium is developing direct ECAD - MCAD design technology, called Altium CoDesigner. Learn more about ECAD-MCAD CoDesign.

Learn more about these approaches to defining the board shape.

Once the shape has been defined, bends in the flexible sections of a rigid-flex design are defined by placing Bending Lines.

Learn more about Rigid-Flex Design.

Assigning a Net to a Plane Layer

Panel page: Split Plane Editor
Related page: Using Internal Power and Split Planes

Assign a net to a plane layer, or a net to a split plane region, in the Split Plane Editor mode of the PCB panel.

The panel lists all plane layers. When a layer is selected in the Layers section, the section below will list all of the split plane zones on that layer (there will only be one if the plane is continuous with no splits defined). Double-click on a split plane zone to open the Split Plane dialog, where you can assign a net. You can also double-click on the layer in the workspace (when the plane layer is the active layer) to open the dialog.

Configuring the Layer Stack for Components Mounted on an Internal Signal Layer

Related article: Embedded Components

There are two situations where components can be mounted on an internal signal layer:

  1. when there are embedded components, or
  2. when there are components mounted on a flex region of a rigid-flex board, and that flex layer extends from a mid-layer in the rigid section of the board.

The software needs to know which way components are oriented for each layer they are mounted on so that it knows when the component primitives must be mirrored. For the Top and Bottom Layers, this is configured automatically; for other layers, the setting is configured by the designer. 

A component embedded on an internal signal layer (the component has been highlighted with blue outlines, the cavity with orange outlines).A component embedded on an internal signal layer (the component has been highlighted with blue outlines, the cavity with orange outlines).

  • Component orientation is configured for a layer in the Orientation column of the Stackup tab of the Layer Stack Manager.
  • If the Orientation column is not visible, enable it by right-clicking on an existing heading in the layers grid then selecting Select columns from the context menu.
  • The components on a layer can either point upwards (Top) or downwards (Bottom).

Documenting the Layer Stack

Object page: Layer Stack Table

Documentation is a key part of the design process and is particularly important for designs with a complex layer stack structure, such as a rigid-flex design. To support this, Altium Designer includes a Layer Stack Table, which is placed (Place » Layer Stack Table) and positioned alongside the board design in the workspace. The information in the layer stack table comes from the Layer Stack Manager.

Include a Layer Stack Table to document the design.
Include a Layer Stack Table to document the design.

  • To place a Layer Stack Table, select Place » Layer Stack Table.
  • The Layer Stack Table details the:
    • Layers used in the design
    • Material used for each layer
    • Thickness of each layer (and optionally the total board thickness).
    • The Dielectric Constant
    • The name of each stack and the layers used in that stack
  • Double-click anywhere on the placed table to open the Properties panel in Layer Stack Table mode.
  • The Layer Stack Table can also include an optional outline of the board showing how the various layer stacks are assigned to regions of the board. Use the Show Board Map option and slider bar to configure the map settings.
  • The Layer Stack Table is an intelligent design object, meaning it can be placed and updated as the design progresses. Double-click on the Layer Stack Table to edit it in the Properties panel.
  • An alternative approach to documenting the layer stack is to add a Draftsman document to the project and add a Layer Stack Table in it. Learn more about Draftsman.

Place the .Total_Thickness and the .Total_Thickness(<SubstackName>) special strings on a mechanical layer to include this information in your design documentation.

Including a Drill Table

Object page: Drill Table

Altium Designer includes an intelligent Drill Table that is placed like any other design object. The table can either display the drills required for all layer pairs (composite), or a specific layer pair. Place a drill table for each layer pair used in the design if you prefer separate drill information for each layer pair.

An alternative approach to documenting the layer stack is to add a Draftsman document to the project and add a Layer Stack Table in it. Learn more about Draftsman.

High Quality, Flexible Design Documentation

Main article: Draftsman

Altium Designer also provides a dedicated documentation editor - Draftsman. Draftsman has been built from the ground up as an environment for creating high-quality documentation that can include dimensions, notes, layers stack tables, and drill tables. Based on a dedicated file format and set of drawing tools, Draftsman provides an interactive approach to bringing together fabrication and assembly drawings with custom templates, annotations, dimensions, callouts, and notes.

Draftsman also supports more advanced drawing features including a Board Isometric View, a Board Detail View, and a Board Realistic View (3D view).

Place drawing views, objects and automated annotations on single or multi-page Draftsman documents. Place drawing views, objects and automated annotations on single or multi-page Draftsman documents.

Learn more about Draftsman

If you find an issue, select the text/image and pressCtrl + Enterto send us your feedback.
Note

The features available depend on your Altium product access level. Compare features included in the various levels of Altium Designer Software Subscription and functionality delivered through applications provided by the Altium 365 platform.

If you don’t see a discussed feature in your software, contact Altium Sales to find out more.

Content